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Summary

The microbiota plays a central role in human health and disease by shap-

ing immune development, immune responses and metabolism, and by

protecting from invading pathogens. Technical advances that allow com-

prehensive characterization of microbial communities by genetic sequenc-

ing have sparked the hunt for disease-modulating bacteria. Emerging

studies in humans have linked the increased abundance of Prevotella spe-

cies at mucosal sites to localized and systemic disease, including periodon-

titis, bacterial vaginosis, rheumatoid arthritis, metabolic disorders and

low-grade systemic inflammation. Intriguingly, Prevotella abundance is

reduced within the lung microbiota of patients with asthma and chronic

obstructive pulmonary disease. Increased Prevotella abundance is associ-

ated with augmented T helper type 17 (Th17) -mediated mucosal inflam-

mation, which is in line with the marked capacity of Prevotella in driving

Th17 immune responses in vitro. Studies indicate that Prevotella predomi-

nantly activate Toll-like receptor 2, leading to production of Th17-polariz-

ing cytokines by antigen-presenting cells, including interleukin-23 (IL-23)

and IL-1. Furthermore, Prevotella stimulate epithelial cells to produce

IL-8, IL-6 and CCL20, which can promote mucosal Th17 immune

responses and neutrophil recruitment. Prevotella-mediated mucosal

inflammation leads to systemic dissemination of inflammatory mediators,

bacteria and bacterial products, which in turn may affect systemic disease

outcomes. Studies in mice support a causal role of Prevotella as coloniza-

tion experiments promote clinical and inflammatory features of human

disease. When compared with strict commensal bacteria, Prevotella exhibit

increased inflammatory properties, as demonstrated by augmented release

of inflammatory mediators from immune cells and various stromal cells.

These findings indicate that some Prevotella strains may be clinically

important pathobionts that can participate in human disease by promot-

ing chronic inflammation.
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Introduction

Studies in germ-free mice and the use of microbial recon-

stitution have underlined the importance of the commen-

sal microbiota in shaping immune development and

function, and hence the risk of inflammatory disease.1

The advances in next-generation-sequencing have allowed

in-depth characterization of non-culturable bacterial com-

munities.2 This has sparked significant interest in deci-

phering the health- and disease-related microbiotas to

identify bacteria and mechanisms that could play a part

in disease aetiology and progression. Characterization of

the healthy human microbiota has revealed distinct bacte-

rial communities at different body sites (gastrointestinal,

urogenital, skin, lung, oral and nasal) supporting the

notion of microbial communities adapting to different

ecological environments in the body.3 Interestingly, bacte-

rial Prevotella species have been found to be prevalent

commensal colonizers at mucosal sites; being the predom-

inant genus in the respiratory system4,5 and a central con-

stituent in one of three gut bacterial enterotypes,6 as well

as present in saliva and several oral sites.3

Prevotella species are anaerobic Gram-negative bacteria

of the Bacteroidetes phylum, which also includes the

clinically important genera Bacteroides and Porphy-

romonas.7 Prevotella strains are classically considered

commensal bacteria due to their extensive presence in

the healthy human body and their rare involvement in

infections. Only a few strains have been reported to give

rise to opportunistic endogenous infections, including

chronic infections, abscesses and anaerobic pneumo-

nia.8–10 In light of the abundant Prevotella colonization

and low pathogenicity it is likely that humans have

co-evolved with Prevotella, giving rise to a mutualistic

relationship. However, emerging studies have linked

increased Prevotella abundance and specific strains to

inflammatory disorders, suggesting that at least some

strains exhibit pathobiontic properties. The present

review addresses the interaction between Prevotella and

the immune system, and how Prevotella may promote

inflammatory disease. Many studies have addressed the

link between bacteria and inflammatory diseases using

various methods (e.g. culture techniques and quantita-

tive PCR for specific stains, genera, or phyla); however,

this review will mainly focus on recent studies employ-

ing genomics-based culture-independent methods of in-

depth microbiota characterization (16S rRNA or

metagenomic sequencing).

Periodontitis

The first link between Prevotella and chronic inflamma-

tory disease was indicated as early as 1928 with the obser-

vation of black-pigmented Gram-negative anaerobes in

periodontal disease.11 Indeed, later studies confirmed the

presence of Prevotella in biofilms of gingivitis and peri-

odontitis.12 It is well established that bacteria are a central

driver of these diseases characterized by neutrophil

recruitment, pro-inflammatory cytokines and metallopro-

teinase expression mediating destruction of connective

tissues and alveolar bone.13 Most mechanistic research

has focused on the role of Porphyromonas gingivalis (a

Gram-negative anaerobic member of the Bacteroidetes

phyla, similarly to Prevotella), because this species was

thought to be the main driver of disease. However,

metagenomic studies have revealed a more diverse dysbi-

otic bacterial community that collectively may shape dis-

ease progression.14 A recent study in mice has shown that

Prevotella nigrescens, similarly to P. gingivalis, can drive

periodontal disease – as demonstrated by maxillary alveo-

lar bone loss following oral inoculation.15 It was found

that infection promoted immune responses characterized

by increased T helper type 17 (Th17) [i.e. interleukin

(IL-17)], suppressed Th2 (IL-4, IL-5 and IL-9), and simi-

lar Th1 [interferon-c (IFN-c)] cytokine production by

lymph node T cells compared with uninfected mice. Pre-

votella nigrescens was found to drive Th17 responses

in vitro through the production of IL-1 by bone-marrow-

derived dendritic cells in a Toll-like receptor 2 (TLR2) -

dependent manner (Fig. 1). The role of Prevotella in driv-

ing Th17-mediated immune responses in periodontitis is

supported by studies linking IL-1a and IL-1b levels in

crevicular fluid to Prevotella colonization.16

Only a few studies have compared the immunological

properties of Prevotella to innocuous oral commensal

bacteria, like Streptococcus and Lactobacillus species.17 In

vitro studies using human monocyte-derived dendritic

cells,18 odontoblast-like cell clones19 and a gingival

epithelial cell line20 suggest that Prevotella exhibit an

enhanced capacity to induce inflammatory mediators

[IL-6, IL-8 and tumour necrosis factor-a (TNF-a)]
when compared with strict commensal oral bacteria and

even P. gingivalis. Interestingly, a murine study using a

subcutaneous chamber model found that oral commen-

sal Streptococcus mitis infection could readily be cleared,

whereas infection with Prevotella intermedia was uncon-

trolled for more than 7 days.21 The Prevotella interme-

dia infection was found to induce increased host cell

infiltration compared with S. mitis; however the infil-

trating neutrophils were defective in terms of phagocy-

tosis and reactive oxygen species production, and

exhibited a necrotic morphology. Interestingly, neu-

trophil dysfunction is a prominent feature of periodon-

tal disease.22 Combined, the studies suggest that

Prevotella can promote periodontitis by driving neu-

trophil recruitment via Th17 immune responses.

Chronic activation of the Th17 pathway may mediate

tissue and bone destruction because recruited neu-

trophils are unable to clear the bacteria and promote

resolution of tissue inflammation.
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Figure 1. Prevotella-mediated inflammation in periodontitis. Prevotella stimulate the release of interleukin-1b (IL-1b), IL-6 and IL-23 by

dendritic cells (DC) through Toll-like receptor 2 (TLR2), which in turn mediates IL-17 production by T helper 17 (Th17) cells that activate

neutrophils. Epithelial cells contribute to neutrophil recruitment and Th17 cell activation through the production of IL-8 and IL-6, respectively.

Prevotella directly induce dysfunction in recruited neutrophils. Chronic inflammation, characterized Th17 immune responses and recruitment of

neutrophils, leads to localized bone loss and tissue destruction characteristic of periodontitis. Local inflammation disseminates and affects

systemic disease, including bone loss in rheumatoid arthritis (RA).
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Rheumatoid arthritis

Epidemiological studies have linked periodontal disease to

increased risk of systemic diseases, including rheumatoid

arthritis (RA).14 It has been speculated that periodontal

pathogens drive systemic inflammation or disseminate to

affected tissue, thereby promoting localized inflammation.

Indeed, increased specific IgG to periodontal pathogens,

including Prevotella intermedia and P. gingivalis, has been

reported in RA.23–27 Furthermore, the presence of DNA

from periodontal pathogens has been found in serum and

synovial fluid of patients with RA, indicating systemic

dissemination of bacteria that directly promote localized

synovial inflammation.28–30 However, the effect-size and

strength of association vary among bacterial species in

these studies, suggesting a more complicated relationship

that may depend on individual study design and clinical

characteristics of the patient cohorts. Interestingly, a

study employing 16S rRNA sequencing of the subgingival

microbiota found that the presence of P. gingivalis corre-

lated with periodontal disease but not RA, whereas Prevo-

tella was associated with new-onset RA (NORA) but not

chronic RA (CRA) independent of periodontal disease.31

In mice, Prevotella nigrescens was found to induce peri-

odontitis after oral inoculation.15 The infected mice

exhibited accelerated onset and severity of experimental

arthritis compared with control mice when immunized

with type II collagen (CII). Importantly, systemic admin-

istration of 100-fold heat-killed bacteria was unable to

emulate this effect, suggesting that establishment of

chronic oral infection and periodontitis by Prevotella is

needed to promote RA. It was found that mice with Pre-

votella-mediated periodontitis promoted IL-17 but not

IFN-c production by CII-specific T cells. The enhanced

IL-17 production by CII-specific T cells was found to cor-

relate with arthritic bone erosion, indicating a central role

of Th17 responses in promoting RA pathology. Collec-

tively, the present studies suggest that Prevotella-mediated

periodontitis can affect the progression of RA by modu-

lating systemic immune responses; however, the relevance

of oral Prevotella to human disease and specific patient

groups requires further research.

Dysbiosis in the gut has been linked to RA, and sug-

gested to be a risk factor responsible for the rise in dis-

ease incidence. Two recent studies performing 16S rRNA

sequencing of faecal samples found dysbiosis associated

with Prevotella strains closely related to Prevotella copri in

patients with NORA.32,33 Faecal matter from patients with

RA and healthy controls was used to colonize the gut of

arthritis-prone SKG mice.33 The microbiota from patients

with RA was found to induce increased numbers of

intestinal IL-17+ Th17 cells, but similar numbers of IFN-

c+ Th1 and FoxP3+ regulatory T cells compared with

healthy microbiota. After triggering disease by zymosan

administration, SKG mice colonized by the RA

microbiota developed severe arthritis characterized by

increased disease and histology scores, and increased

serum rheumatoid factor levels. It was demonstrated that

the severe arthritis was associated with increased IL-17

(Th17) and unchanged IFN-c (Th1) production in

response to the arthritis-related autoantigen RPL23A.

Similarly, oral administration of Prevotella melanogenica

in humanized HLA-DQ8 mice immunized with CII aug-

mented RA onset and severity, which was associated with

increased gut inflammation as demonstrated by shorten-

ing of intestinal villi and leucocyte infiltration.34 Interest-

ingly, the same study reported suppression of

experimental RA by Prevotella histicola through the

expansion of regulatory T cells in the gut and suppression

of systemic CII-specific immune responses. These findings

suggest that specific members of the Prevotella genus have

different disease modulating properties, and highlight the

importance of in-depth characterization of the microbiota

in the study of inflammatory disease.

In vitro studies comparing Prevotella copri to the gut

commensal bacteria Bacteroides fragilis, Bifidobacterium

bifidum, Lactobacillus acidophilus and Escherichia coli

using bone-marrow-derived dendritic cells found that

Prevotella copri was superior in inducing the Th17 driving

cytokines IL-6 and IL-23.33 Hence, Prevotella copri-stimu-

lated bone-marrow-derived dendritic cells were able to

prime naive Th cells to produce up to fivefold increased

IL-17 levels compared with the commensal bacteria.

These findings suggest that Prevotella copri exhibits intrin-

sic Th17 promoting capability, which when present in the

gut microbiota can promote RA.

A recent study has shed light on the possible

immune modulatory role of Prevotella copri in human

RA. Of RA patients (including NORA and CRA), 32%

were found to have serum IgA or IgG antibodies speci-

fic for Prevotella copri, which was almost absent in

healthy controls and patients with other arthritic dis-

eases.35 In comparison, IgA or IgG antibodies specific

for P. gingivalis were present at similar frequencies and

levels in all patient groups and healthy controls,

whereas antibodies to the gut commensals Bacteroides

fragilis and Escherichia coli were largely absent. These

findings indicate that the immune responses to Prevo-

tella copri exclusively develop in RA patients and may

contribute to disease initiation or progression in some

patients. Interestingly, Prevotella copri-specific IgA but

not IgG levels were associated with systemic levels of

innate [macrophage inflammatory protein 1a (MIP-1a)
and MIP-1b], Th1 (IFN-c and IL-12), and Th17 (IL-23,

IL-22, IL-17A, IL-17E and IL-17F) cytokines.35 Patients

with RA had either IgA, IgG or no specific antibodies,

indicating that different immune responses to Prevotella

copri can develop within the individual patient, which

in turn may have implications for disease risk and

outcomes.

ª 2017 John Wiley & Sons Ltd, Immunology, 151, 363–374366

Larsen



Bacterial vaginosis

Bacterial vaginosis (BV) is associated with poor health

outcomes for women, including pre-term birth, and

increased risk of acquiring HIV or other infections. The

disease is characterized by the loss of a commensal Lacto-

bacillus-rich microbiota and the blooming of anaerobic

bacteria in the vaginal tract. Although earlier reports have

implicated Prevotella bivia in BV,36 a couple of very

recent studies found that Prevotella abundance increased

with severity of BV, which inversely correlated with the

presence of Lactobacillus.37–39 Prevotella in the vaginal

microbiota was associated with increased innate (IL-1a,
IL-1b, IL-8, and TNF-a) cytokines, and production of

Th17 (IL-23 and IL-17) and Th1 (IL-12p70 and IFN-c)
related cytokines in cervicovaginal fluid.37,38 These find-

ings are in line with a previous study linking increased

IL-1b and IL-8 levels in cervicovaginal fluid to Prevotella

bivia colonization.40 Increased numbers of activated

CCR5+ HLA-DR+ CD38+ Th cells were associated with

the presence of Prevotella in the vaginal mucosa.38 No

apparent change in mucosal antigen-presenting cell

(APC) numbers (CD11c+ dendritic cells or CD14+ mono-

cytes/macrophages) was observed in the same study; how-

ever, APCs from Lactobacillus-rich compared with

Prevotella-rich vaginal mucosas exhibited distinct tran-

scriptional profiles.37 Prevotella-rich mucosa APCs showed

a profile similar to APCs activated by lipopolysaccharide

(LPS), and expressed cytokine genes known to promote

Th17 immune responses (IL23A, IL6, IL1A and IL1B).

These findings indicate that Prevotella in the vaginal tract

contributes to activation of a Th17 immune response via

APCs, leading to the recruitment and activation of Th

cells in the inflamed vaginal mucosa (Fig. 2). Important

in relation to women’s health, the recruitment of CCR5+

Th cells into the vaginal mucosa may be a central under-

lying risk factor for increased HIV transmission in BV.38

Cervicovaginal epithelial cultures stimulated with Pre-

votella (Prevotella bivia or Prevotella amnii) compared

with vaginal commensal Lactobacillus (Lactobacillus crispa-

tus, Lactobacillus iners and/or Lactobacillus acidophilus)

were reported to induce higher levels of IL-1a, IL-1b, IL-
6, IL-8, CCL20, CXCL2, CXCL3 and CCL5.37,38,41–43 This

cytokine/chemokine profile suggests that Prevotella has a

high intrinsic capacity to promote vaginal Th17-mediated

immune responses and neutrophil recruitment through

epithelial cells. The enhanced inflammatory property of

Prevotella is supported by studies in mice, which found

increased numbers of activated CD44+ and CCR5+ Th

cells in the vaginal tract of germ-free mice following inoc-

ulation with Prevotella bivia compared with Lactobacillus

crispatus.38

One of the recent studies linking Prevotella to BV39

addressed the influence of host genetics on the vaginal

microbiota in a twin-family cohort. It was reported that

microbiota composition and Prevotella abundance were

largely determined by host genetics, but influenced by

environmental factors, including menopause, hormone

therapy, human papillomavirus infection and obesity.

Gene candidate analysis found that the minor allele group

with polymorphism in the IL-5 gene had increased abun-

dance of Prevotella melaninogenica. To address a potential

causal effect of obesity in driving vaginal dysbiosis, the

microbiota of obese mice on a high-fat diet was com-

pared with that of lean mice on a control diet.39 Obesity

in mice was found to induce vaginal dysbiosis linked to

increased abundance of Prevotella, and vaginal transfer of

the dysbiotic microbiota to lean mice increased plasma

LPS levels in recipient mice. These findings underline that

complex gene–environment interactions shape the risk of

acquiring a Prevotella-rich vaginal microbiota. However,

once acquired, Prevotella may drive chronic inflammation

associated with BV that in turn has systemic effects on

other diseases.

Gut dysbiosis triggered by HIV

Persistent chronic inflammation is a central hallmark of

HIV infection even after successful antiviral therapy.

Low-grade systemic inflammation characterized by acti-

vated T cells, inflammatory cytokines, endotoxaemia and

gut bacteria translocation has been linked to poor disease

outcomes and increased mortality.44,45 Studies have

demonstrated that HIV infection is associated with

intestinal dysbiosis characterized by increased Prevotella

and reduction in Bacteroides.46–49 Recent studies suggest

that increased Prevotella in HIV is a driver for persistent

inflammation in the gut leading to mucosal dysfunction

and systemic inflammation.50–52 Colon biopsies from

untreated HIV-infected individuals showed increased Pre-

votella colonization, and Prevotella abundance was specifi-

cally associated with the elevated numbers of activated

HLA-DR+ CD38+ Th and Tc cells, as well as higher

CD40 expression on HLA-DR+CD1chigh myeloid dendritic

cells in colon mucosa.50 A later study from the same

group reported that colon dysbiosis (linked to Prevotella

copri and Prevotella stercorea) in HIV-infected individuals

was associated with elevated CD40 expression on a

CD1c+ subset of HLA-DR+ CD11chigh myeloid dendritic

cells, which in turn correlated with systemic levels of acti-

vated HLA-DR+ CD38+ Th and Tc cells.52 Furthermore,

CD40 expression levels on CD1c+ myeloid dendritic cells

correlated with Th17 (IL-1b, IL-5, IL-23 and IL-17), Th1

(IFN-c) and innate (TNF-a and IL-10) cytokines in colo-

nic tissue. Another study confirmed the link between Pre-

votella-rich gut dysbiosis in HIV and increased systemic

levels of activated T cells.51 The study additionally

reported correlations between dysbiosis and increased sys-

temic high-sensitivity C-reactive protein and LPS levels.

However, no specific correlations to gut Prevotella
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Figure 2. Prevotella-mediated inflammation in bacterial vaginosis. Prevotella stimulate release of interleukin-1b (IL-1b), IL-6 and IL-23 by den-

dritic cells (DC), which in turn mediates IL-17 production by T helper 17 (Th17) cells that activate neutrophils. DCs also produce IL-12, which

mediates the activation of Th1 cells. Epithelial cells contribute to neutrophil and Th cell recruitment through the production of IL-8 and CCL5,

respectively. Genetic background and obesity predispose to Prevotella-rich dysbiosis in bacterial vaginosis. Dysbiosis leads to systemic release of

lipopolysaccharides (endotoxaemia), and possibly systemic inflammation. Increased numbers of mucosal CCR5-positive Th cells are associated

with increased risk of HIV transmission.
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abundance were investigated. Combined, these studies

indicate that HIV-induced Prevotella accumulation leads

to dysfunctional immune responses in the gut mucosa

driving bacterial translocation, endotoxaemia and sys-

temic inflammation (Fig. 3). A recent interventional

study administering prebiotics to HIV patients found that

short dietary supplementation attenuated gut dysbiosis

and systemic inflammation.53 However, longitudinal stud-

ies in humans and experimental work in mice are needed

to delineate a causal relationship between HIV-induced

Prevotella-rich dysbiosis, inflammation and adverse dis-

ease outcomes. Studies addressing Prevotella and gut dys-

biosis independent of HIV are reviewed below.

Gut dysbiosis and metabolic syndrome

Metabolic syndrome is a collection of risk factors (obe-

sity, insulin resistance, high blood pressure and increased

blood cholesterol/triglycerides) predisposing to the devel-

opment of diabetes, cardiovascular disease and non-alco-

holic fatty liver disease (NAFLD). These diseases are

highly interrelated, and a common feature is low-grade

systemic inflammation. Gut dysbiosis is associated with

disease, but reports on the involvement of Prevotella have

been inconsistent. Increased abundance of Prevotella was

found to be associated with insulin-resistance in a non-

diabetic cohort,54 in a cohort of morbidly obese

patients,55 and was linked to obesity,56,57 hypertension,58

and NAFLD56,59 in case–control studies. Yet other studies
found no such association in type 2 diabetes,60–62 obe-

sity,59,63 and ischaemic stroke patients,64 although a com-

prehensive study found an association with increased

Paraprevotella (member of the Prevotellaceae family) in

type 2 diabetes.60 These discrepancies may be due to the

complex interrelatedness of the diseases, making patient

selection and stratification important study parameters.

Furthermore, different bacterial species could be involved

in expression of the same disease features. Indeed,

increased abundance of both Prevotella copri and Bac-

teroides vulgatus was associated with insulin-resistance,

but the species were mutually exclusive in the gut.54 Add-

ing further to the complexity, a study showed that indi-

viduals with improved glucose metabolism following a

high-fibre dietary intervention had a Prevotella-rich gut

microbiota,65 suggesting interaction of diet on the out-

come of specific disease features.

Studies in mice indicate that Prevotella can drive fea-

tures of metabolic syndrome. Colonization of germ-free

mice with a Prevotella-rich microbiota from patients with

hypertension induced higher blood pressure compared

with mice receiving microbiota from a normotensive

donor.58 Prevotella copri colonization in mice on a high-

fat diet promoted increased insulin-resistance.54 Further-

more, the role of Prevotella-rich dysbiosis in NAFLD and

obesity was studied using the transfer of dysbiotic

microbiota enriched with Prevotella, unknown Prevotel-

laceae and TM7 from mice with a deficient inflamma-

some pathway (Asc knockout or IL-18 knockout) to

wild-type mice by co-housing.66 The presence of a Prevo-

tella-rich gut microbiota exacerbated methionine-choline-

deficient diet-induced non-alcoholic steatohepatitis

(NASH) characterized by increased liver steatosis and

inflammation, and elevated liver-enzymes alanine amino-

transferase and aspartate aminotransferase in blood. The

study found that Prevotella-rich dysbiosis was associated

with the presence of black-pigmented bacteria in colonic

epithelial cells and macrophages. Furthermore, the study

indicated that NASH disease propagation was driven by

epithelium-derived CCL5-dependent intestinal inflamma-

tion giving rise to systemic release of bacterial TLR4 and

TLR9 agonists promoting TNF-a-dependent inflamma-

tion and pathology in the liver. Additionally, transfer of

Prevotella-rich microbiota from Asc knockout mice

caused increased weight-gain in both wild-type mice on

high-fat diet, and obesity-prone ob/ob mice.66 However,

the transfer did not affect insulin resistance, underlining a

heterogenic effect of the microbiota in metabolic disease

phenotypes. Although these findings are compelling, addi-

tional investigations of immune mechanisms in metabolic

disease are needed in humans.

Gut dysbiosis and inflammatory bowel disease

An interesting line of research has demonstrated a central

role of the Nucleotide-binding and oligomerization

domain-Like Receptor P6 (NLRP6)-inflammasome in

maintaining gut homeostasis and protection from Prevo-

tella-rich dysbiosis, which can promote experimental coli-

tis in mice. NLRP6-deficiency was found to cause goblet

cell dysfunction and reduced mucus secretion on intesti-

nal surfaces leading to increased susceptibility to Citrobac-

ter rodentium infection.67 The NLRP6-inflammasome in

intestinal epithelial cells was found to sense microbiota-

derived metabolites leading to IL-18-dependent produc-

tion of antimicrobial peptides, which in turn shapes

microbiota composition under homeostatic conditions.68

Homeostatic epithelial cell-derived IL-18 has previously

been shown to mediate Foxp3+ regulatory T cell function,

and directly suppress pathogenic Th17 cell function in

the intestine.69 This finding provides a possible model for

immunological maintenance of gut homeostasis, where

another layer of microbial protection involving regulatory

T cell-stimulated IgA production could further shape the

gut microbiota.70,71 Indeed, gut bacteria known to pro-

mote colitis have been shown to be a target of T-cell-

dependent IgA,72 although a protective role of Prevotella-

specific IgA remains to be formally demonstrated.

Transfer of Prevotella-rich dysbiotic gut microbiota

from Asc knockout or NLRP6 knockout mice to wild-

type mice was found to promote dextran sulphate
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Figure 3. Gut inflammation associated Prevotella-rich dysbiosis. Prevotella stimulates release of interleukin-1b (IL-1b), IL-6 and IL-23 by den-

dritic cells (DC), which in turn mediate IL-17 production by T helper 17 (Th17) cells that activate neutrophils. DCs also produce IL-12, which

mediates the activation of Th1 and cytotoxic T (Tc) cells. Epithelial cells may contribute to recruitment of CCR5-positive T cells through the

production of CCL5. HIV infection and exposure to Prevotella are risk factors for Prevotella-rich dysbiosis in the gut. Dysbiosis leads to systemic

release of inflammation, bacteria, lipopolysaccharides (endotoxaemia) and Toll-like receptor 9 (TLR9) agonists, which in turn mediates systemic

disease expression, including liver inflammation, insulin resistance, weight gain and increased blood pressure (BP). Dysbiosis-associated increase

in Th17 immune responses may affect new-onset rheumatoid arthritis (NORA). Dysbiosis increases Th1-mediated inflammation in dextran sul-

phate sodium (DSS)-induced experimental colitis.
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sodium-induced experimental colitis characterized by

increased weight loss, tissue pathology and death in recip-

ient mice. Increased susceptibility to experimental colitis

was dependent on CCL5, and increased CCL5 levels were

associated with intestinal recruitment of conventional T

cells, B cells and APCs in NLRP6 knockout mice.73 Fur-

thermore, the study indicated that Prevotella-rich dysbio-

sis drive decreased NLRP6-dependent IL-18 production

in intestinal epithelial cells. Interestingly, this was sup-

ported by a later study demonstrating that transfer of

Prevotella-rich dysbiotic microbiota would subvert IL-18-

dependent antimicrobial peptide production through the

production of metabolites antagonizing NLRP6 function,

which in turn promoted establishment of the dysbiotic

microbial community in the gut.68 Colonization of antibi-

otic-treated C57BL/6 mice with Prevotella copri enhanced

dextran sulphate sodium-induced colitis compared with

control mice or mice colonized by commensal Bacteroides

thetaiotamicron.32 The enhanced colitis was associated

with increased IFN-c production by lamina propria Th

cells from Prevotella copri colonized mice, suggesting that

Prevotella promote Th1 immune responses in experimen-

tal colitis.

Although a role for Prevotella in inflammatory bowel

disease is compelling from studies of experimental colitis

in mice, currently no studies have provided an association

between increased Prevotella abundance and disease in

humans. In fact, a study indicated reduced Prevotella in

paediatric Crohn’s disease.74 Furthermore, the most com-

prehensive study to date75 found no association between

Prevotella and new-onset Crohn’s before treatment.76

Rather, Crohn’s disease was associated with outgrowth of

Enterobacteriaceae, Pasteurellaceae, Veillonellaceae and

Fusobacteriaceae, which is in line with earlier microbiome

studies of Crohn’s disease and ulcerative colitis.77,78 The

mechanisms by which Prevotella promote disease in mice

(subversion of gut homeostasis and initiation of intestinal

inflammation) may be shared with other bacterial species

linked to human disease. Furthermore, human inflamma-

tory bowel disease is highly heterogeneous and specific

bacteria may be involved in different disease phenotypes

and immune mechanisms,79 suggesting a need for

larger prospective cohort studies to delineate causal

relationships.

Asthma and COPD

The healthy lung has traditionally been viewed as sterile

due to the absence of culturable bacteria in the absence

of clinical respiratory infection. However, a study in

20104 reported a low-density, but distinct microbial com-

munity dominated by Prevotella in the lung. This finding

has subsequently been confirmed by later studies control-

ling for potential sources of contamination.5,80–82 Intrigu-

ingly, Prevotella abundance was reported to be reduced in

patients with asthma and with COPD, which instead pre-

sented with outgrowth of pathogenic proteobacteria.4

Lung colonization by proteobacteria has previously been

linked to increased risk of developing asthma in child-

hood,83 exacerbation episodes,84 as well as increased neu-

trophilia and IL-8 levels in patients with asthma.85

Similarly, patients with COPD present with predominant

proteobacterial colonization during both stable disease

and excerbations.86–88 This has led to speculation that

proteobacteria take part in disease development and pro-

gression in COPD.89 This hypothesis is supported by

studies associating increased bacteria loads to increased

airway inflammation90,91 and accelerated decline in lung

function.92

A study compared the inflammatory properties of Pre-

votella associated with healthy lungs (Prevotella melanino-

genica, Prevotella nanceiensis and Prevotella salivae) with

proteobacteria associated with asthma and COPD (Hae-

mophilus influenzae B, non-typeable Haemophilus influen-

zae and Moraxella catarrhalis).93 Prevotella was found to

induce similar levels of CD83, CD86 and CD40 activa-

tion-maker surface expression, but reduced production of

IL-12p70, IL-23 and IL-10 cytokines in monocyte derived

dendritic cells when compared with proteobacteria. This

lower inflammatory capacity of Prevotella compared with

proteobacteria was further demonstrated in mice report-

ing decreased MIP-2a (IL-8), TNF-a and thymic stromal

lymphopoietin production by lung stromal cells, and

decreased levels of TNF-a production by lung immune

cells.94 Titration experiments indicated that the lower

stimulatory capacity of Prevotella was due to intrinsic dif-

ferences in composition of pathogen-associated molecular

patterns. It was hypothesized93,94 that the difference could

be ascribed to alternate LPS structures as Prevotella pro-

duce penta-acylated LPS whereas Haemophilus influenzae

and Moraxella catarrhalis produce hexa-acylated and

hepta-acylated LPS, respectively. Indeed, an analysis of

the LPS synthesis pathway in publicly available genomes

found that only gammaproteobacteria have the genetic

capacity to produce hexa-acylated LPS (the prototypic

LPS commonly isolated from Escherichia coli), which

exhibit 100-fold stimulatory capacity on TLR4 compared

with penta-acylated LPS.95 Non-typeable Haemophilus

influenzae was found to induce severe lung neutrophilia

in mice accompanied by increased levels of MIP-2a

(IL-8), CCL20 and IL-1b in lung tissue compared with

Prevotella nanceiensis.94 Furthermore, non-typeable

Haemophilus influenzae induced severe immune pathology

in lung tissue, whereas no pathology could be observed in

response to Prevotella nanceiensis when compared with

control mice. The diminished lung inflammatory capacity

of Prevotella nanceiensis was dependent on TLR2, whereas

the inflammation mediated by non-typeable Haemophilus

influenzae was TLR2-independent. These findings support

that Prevotella exhibit limited TLR4-stimulating capacity
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as this genus cannot produce hexa-acylated LPS. Further-

more, proteobacteria may specifically participate in driv-

ing inflammatory features of asthma and COPD, whereas

Prevotella in comparison may be well tolerated in the

lung.

A possible homeostatic role for Prevotella in the healthy

lung remains largely unknown. Induction of COPD-like

lung inflammation and pathology in mice by LPS/elastase

inhalation was found to decrease Prevotella abundance,

and mediate Pseudomonas and Lactobacillus outgrowth.96

This suggests that reduced Prevotella in human asthma

and COPD4 may not be a risk factor before disease, as

disease-related inflammation may directly drive decreased

Prevotella abundance by creating a microenvironment not

suitable for survival. Studies suggest that the low-density

lung microbiota is transmitted from the oral microbiota

by microaspiration and continuously eliminated.80,81 It

could therefore be speculated that the limited immune

stimulatory potential of Prevotella may drive its own

elimination by mediating a low-grade inflammatory pro-

cess, which in turn may protect from invading respiratory

pathogens and chronic disease under homeostatic condi-

tions.80 Alternatively, a study found that early establish-

ment of a Bacteroidetes-rich lung microbiota in neonatal

mice drives expansion of regulatory T cells protecting

from allergic airway disease in response to house-dust-

mite.97 Hence Prevotella (a member of the Bacteroidetes

phyla) may participate in establishing tolerance in the

lung, although a role for Bacteroides species with known

immune regulatory properties98 cannot be ruled out.

Combined, these studies show that many speculations can

be made as to the role of Prevotella in the healthy lung,

and so there is a need for more experimental work for

clarification.

Concluding remarks

Emerging studies are linking Prevotella abundance and

specific strains to inflammatory disease mediated by

Th17-related immune responses. Indeed, at least some

Prevotella strains seem to be inflammophilic pathobionts

that thrive in an inflammatory environment, and exhibit

superior intrinsic capacity to stimulate Th17-mediated

inflammation compared with strict commensal bacteria.

There is compelling mechanistic and causal evidence in

mice that Prevotella can promote inflammatory disease

features. However, there is a need for more studies in

humans to ascertain a causal and potential disease-trig-

gering role for Prevotella. Inflammatory diseases are

highly heterogeneous and develop through the complex

interactions between host genetic risk factors and envi-

ronmental exposures.99 Prevotella may only play a part

in certain disease endotypes, and larger cohort studies

are needed to delineate causal relationships. Addition-

ally, Prevotella may not be the only genus participating

in inflammatory disease, and specific Prevotella species

may exhibit different properties. A recent comprehensive

study comparing several bacterial species suggests that

membership of a specific phylum does not predict

immunological properties, underlining the importance

of characterizing properties at species level.100 Further-

more, studies indicate that Prevotella is a genus with

high genetic diversity within and between species.101,102

This may explain why Prevotella is abundant in the

healthy microbiota, and suggests that only certain

strains may exhibit pathobiontic properties. Species

heterogeneity also underlines the need to continue in-

depth metagenomic characterization of the microbiota

in inflammatory disease to reveal disease-modulating

properties. Intriguingly, some Prevotella species could

have evolved immune escape mechanisms, including

induction of neutrophil dysfunction,21, that may lead to

chronic inflammation due to defective clearance. Deci-

phering the genetic and mechanistic basis of immune

escape by Prevotella may in the future reveal disease-

modifying drug targets.
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